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In a recent paper �Phys. Rev. E 76, 031202 �2007��, Schmidt proposed a fundamental measure density
functional theory for one-dimensional nonadditive hard-rod fluid mixtures and compared its predictions for the
bulk structural properties with Monte Carlo simulations. The aim of this Brief Report is to recall that the
problem admits an exact solution in the bulk, which is briefly summarized in a self-contained way.
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Perhaps the most successful class of density functional
theories are based on Rosenfeld’s fundamental measure
theory �FMT� �1�. In a recent paper �2�, Schmidt has pro-
posed a FMT for the excess free energy of inhomogeneous
one-dimensional nonadditive hard-rod fluid mixtures. As a
test of the theory, the FMT predictions for the pair correla-
tion functions in the bulk region are compared with Monte
Carlo simulations, a general good agreement being found.
On the other hand, notwithstanding the merits of the FMT
constructed in Ref. �2�, it presents some limitations that be-
come more important as the density and/or the nonadditivity
increase. For instance, it yields nonzero values of the pair
correlation functions inside the core and predicts a spurious
demixing transition.

The fact that the one-dimensional nonadditive hard-rod
problem admits an exact solution in the bulk seems to have
been overlooked in Ref. �2�. Actually, any one-dimensional
homogeneous system is exactly solvable, provided that every
particle interacts only with its nearest neighbors �3–5�. The
aim of this Brief Report is to fill the gap in Ref. �2� by
presenting a brief and self-contained summary of the exact
solution, particularizing to binary nonadditive mixtures, and
comparing with the bulk FMT predictions for one of the
cases considered in Ref. �2�.

Let us consider an m-component one-dimensional
fluid mixture with constant �bulk� number densities
��i ; i=1, . . . ,m� and interaction potentials �ij�x�=�ij�−x�
acting only on nearest neighbors. Given a particle of species
i at the origin, the probability that its lth neighbor belongs to
species j and is located at a point between x and x+dx is
given by pij

�l��x�dx, which defines the �conditional� probabil-
ity density distribution pij

�l��x�. In particular, pij
�1��x� is the

nearest-neighbor distribution. The distributions pij
�l��x� verify

the normalization condition

�
j=1

m �
0

�

dxpij
�l��x� = 1 �1�

and obey the recurrence relation

pij
�l��x� = �

k=1

m �
0

x

dx�pik
�l−1��x��pkj

�1��x − x�� . �2�

Its solution in Laplace space is

P�l��s� = �P�1��s��l, �3�

where P�l��s� is the m�m matrix whose elements Pij
�l��s� are

the Laplace transforms of pij
�l��x�.

The total probability density of finding a particle of spe-
cies j, given that a particle of species i is at the origin, is
obtained as

� jgij�x� = pij�x� = �
l=1

�

pij
�l��x� , �4�

where gij�x� is the pair correlation function. In Laplace
space,

Gij�s� =
1

� j
Pij�s�, P�s� = P�1��s��I − P�1��s��−1, �5�

where use has been made of Eq. �3�. Therefore, the knowl-
edge of the nearest-neighbor distributions �pij

�1��x�� suffices to
obtain the pair correlation functions �gij�x��. Note that the

Fourier transform h̃ij�k� of the total correlation function
hij�x�	gij�x�−1 is simply related to the Laplace transform

Gij�s� of gij�x� by h̃ij�k�=Gij�ık�+Gij�−ık�, where ı is the
imaginary unit.

It can be proven that the nearest-neighbor distribution
possesses the following explicit form �4,5�:

pij
�1��x� = � jKije

−��ij�x�e−�x, �6�

where �=1 /kBT and �=�p, kB, T, and p being the Boltz-
mann constant, the temperature, and the pressure, respec-
tively. The Laplace transform of Eq. �6� is

Pij
�1��s� = � jKij	ij�s + �� , �7�

where 	ij�s� denotes the Laplace transform of e−��ij�x�.
To close the problem, one needs to determine the ampli-

tudes Kij =Kji and the damping coefficient �. A convenient
way of doing so is by enforcing basic consistency conditions.
Note first that the normalization condition �1� for l=1 is
equivalent to

�
j=1

m

Pij
�1��0� = 1. �8�

Next, since limx→� gij�x�=1, one must have*andres@unex.es, http://www.unex.es/fisteor/andres/
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lim
s→0

sGij�s� = 1. �9�

A subtler consistency condition �4� dictates that
limx→� pij

�1��x� / pik
�1��x� must be independent of the choice of

species i. From Eq. �6� this implies that

Kij

Kik
= independent of i . �10�

Equations �8�–�10� are sufficient to obtain Kij and �. To be
more specific, let us consider the case of a binary mixture
�m=2�. Thus, Eq. �5� yields

G11�s� =
Q11�s��1 − Q22�s�� + Q12

2 �s�
�1D�s�

, �11�

G22�s� =
Q22�s��1 − Q11�s�� + Q12

2 �s�
�2D�s�

, �12�

G12�s� =
Q12�s�


�1�2D�s�
, �13�

where

Qij�s� 	 
�i/� jPij
�1��s� = 
�i� jKij	ij�s + �� , �14�

D�s� 	 �1 − Q11�s���1 − Q22�s�� − Q12
2 �s� . �15�

The behavior of Qij�s� for small s is

Qij�s� = 
�i� jKij�	ij��� + 	ij� ���s + O�s2�� , �16�

where 	ij� �s� is the first derivative of 	ij�s�. Application of
Eq. �8� yields

K11 =
1 − �2K12	12���

�1	11���
, �17�

K22 =
1 − �1K12	12���

�2	22���
. �18�

Next, Eq. �9� implies

�1
2K11	11� ��� + �2

2K22	22� ��� + 2�1�2K12	12� ��� = − 1.

�19�

Finally, Eq. �10� becomes

K11K22 = K12
2 . �20�

Equations �17�–�20� constitute a set of four independent
equations whose solution gives K11, K12, K22, and �. Inserting
Eqs. �17� and �18� into Eqs. �19� and �20� one gets

K12 =
1

�1�2	12���
1 + �1L11��� + �2L22���

L11��� + L22��� − 2L12���
, �21�

1 − �K12	12��� + �1�2�	12
2 ��� − 	11���	22����K12

2 = 0,

�22�

where we have called Lij�s�		ij� �s� /	ij�s� and �=�1+�2 is
the total density. Substitution of Eq. �21� into Eq. �22� yields

a single equation for �, which in general is transcendental.
Once solved, the coefficients Kij are obtained from Eqs. �17�,
�18�, and �21�. The exact pair correlation functions are then
entirely determined in Laplace space through Eqs. �11�–�15�.

In the particular case of nonadditive hard rods, one has
e−��ij�x�=
�x−�ij�, where 
�x� is Heaviside’s step function,
so that

	ij�s� =
e−�ijs

s
, Lij�s� = − �ij − s−1, �23�

Qij�s� = 
�i� jKij
e−�ij�s+��

s + �
. �24�

The constraint to nearest-neighbor interactions implies that
�ij ��ik+� jk for all �i , j ,k�. In the binary case this amounts

FIG. 1. �Color online� Bulk pair correlation functions gij�x� for
a one-dimensional binary hard-rod mixture with �22 /�11=2,
�12 /�11=15 /8, and �1=�2=�11

−1 /4. The solid lines are the exact
results and the dashed lines are the FMT predictions of Ref. �2�.
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to 2�12max��11,�22�. The recipe described by Eqs. �17�,
�18�, and �21�–�23� for the thermodynamic quantity �=�p
and the amplitudes Kij, and by Eqs. �11�–�15� and �24� for
the structural Gij�s�quantities are easy to implement. In order
to go back to real space and obtain the pair correlation func-
tions gij�x� one can use any of the efficient numerical
schemes described in Ref. �6�. On the other hand, the sim-
plicity of Eq. �24� allows one to get a fully analytical repre-
sentation. Note first that

1

D�s�
= �

m=0

�

�Q11�s� + Q22�s� + Q12
2 �s� − Q11�s�Q22�s��m.

�25�

When Eq. �25� is inserted into Eqs. �11�–�13�, one can ex-
press Gij�s� as linear combinations of terms of the form

Q11
n11�s�Q22

n22�s�Q12
n12�s� =

e−a�s+��

�s + ��n ��1K11�n11+n12/2

� ��2K22�n22+n12/2, �26�

where a	n11�11+n22�22+n12�22 and n	n11+n22+n12. The
inverse Laplace transforms gij�x�=L−1�Gij�s�� are readily
evaluated by using the property

L−1� e−a�s+��

�s + ��n� = e−�x �x − a�n−1

�n − 1�!

�x − a� . �27�

It is important to realize that if one is interested in distances
x smaller than a certain value R, only a finite numbers of
terms contribute to gij�x�, namely, those with �n11,n22,n12�
such that n11�11+n22�22+n12�22�R. In particular, for the
most nonadditive case considered in Ref. �2�, i.e.,
�22 /�11=2 and �12 /�11=15 /8, only those terms satisfying
8n11+16n22+15n12�80 are needed for x�10�11. Moreover,
gij�x�=� j

−1pij
�1��x�=Kije

−�x in the first shell, i.e., for
�ij �x��ij +�ij, where �11=min��11,2�12−�11�,
�22=min��22,2�12−�22�, and �12=min��11,�22�.

Let us consider a specific system with �22 /�11=2,
�12 /�11=15 /8, and �1=�2=�11

−1 /4. The corresponding solu-
tion of the transcendental equation for � is �2.52964�11

−1,

so that �p /�5.05927. The numerical values of the ampli-
tudes Kij and the contact values gij��ij

+� are K1191.5298,
K221148.60, K22324.24, g11��11

+ �=g22��22
+ �7.29382,

and g12��12
+ �2.82473. The property g11��11

+ �=g22��22
+ � is

common to all the equimolar cases ��1=�2�, since then Eqs.
�17� and �18� imply that K11	11���=K22	22���. Figure 1
compares the three exact bulk correlation functions gij�x�
with those predicted by the FMT proposed in Ref. �2�. The
discrepancies are similar to those found in Ref. �2� between
Monte Carlo simulations and FMT.

It must be emphasized that the scheme �5�–�10� provides
the exact bulk correlation functions for a one-dimensional
mixture in the absence of external fields. The more general
problem addressed in Ref. �2�, namely the excess free energy
as a functional of the inhomogeneous densities, is much
more complicated and, to the best of my knowledge, its exact
solution is not known. On the other hand, the exact density
profiles � j�x� induced by external potentials Vj�x� can be
obtained under certain conditions. The trick consists of as-
suming that one of the species �here labeled as i=0� has a
vanishing concentration ��0=0� and interacts with the other
species via the potentials �0j�x�=Vj�x�. The knowledge of
the bulk correlation functions gij�x� �with � j→� j

bulk� can then
be exploited to get � j�x�=� j

bulkg0j�x�. The important limita-
tion, however, is that Vj�x� must represent the potential ex-
erted by a wall that acts only on its nearest particles.

To conclude, it is expected that the exact solutions for
one-dimensional homogeneous systems derived elsewhere
�3–5� and summarized in this paper can be useful as bench-
marks to construct, test, and refine approximate theories such
as the FMT of Ref. �2�. This would allow one to gain some
illuminating insight into the subtleties and difficulties of the
problem of interest, which can be helpful in its extension to
the more realistic case of three-dimensional systems.
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